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Abstract -
Conventionally used moisture detection equipment such as

infrared scanners and capacitance meters require a trained
interpreter to understand moisture issues on rooftops. Ad-
ditionally, conventional sensors can only provide reliable re-
sults in specific environmental conditions. In this paper, we
will discuss the various methods used for roof moisture scans
and their limitations. We will then provide an in-depth anal-
ysis of GPR paired with deep segmentation neural networks
for roof moisture scans, including its advantages, limitations,
and potential applications. We will also present a case study
demonstrating the effectiveness of this approach in detecting
moisture damage in a real-world scenario. Our preliminary
experiments find that deep neural networks are effective in
segmenting GPR radargrams and finding moisture, with par-
ticular neural networks more effective than others.
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1 Introduction
Roof moisture scans are essential for maintaining the

structural integrity of buildings by identifying moisture
damage to the roof. Traditional methods such as visual in-
spection, infrared thermography, nuclear moisture gauges,
and capacitance meters have limitations that can affect the
accuracy and reliability of results. However, Ground Pen-
etrating Radar (GPR) paired with Artificial Intelligence
(AI) has emerged as a promising solution for conducting
roof moisture scans.

GPR is a non-destructive testing technique that uses
electromagnetic waves to detect and image subsurface fea-
tures of materials. The integration of GPR and AI enables
a comprehensive and accurate assessment of moisture lev-
els in the roof structure. GPR provides high-resolution
imaging of the subsurface, while AI can process the data
and identify patterns that may not be visible to the hu-
man eye. This combination allows for early detection of
moisture damage, reducing repair costs and increasing the
lifespan of the roof.

GPR technology captures data by measuring the dielec-

tric properties of materials, making it an effective tool for
detecting moisture within building envelopes and roofs
[1, 2]. The Proceq GP8800 SFCW handheld GPR sensor
is a popular device for capturing GPR data, recording data
at a fixed distance interval of 1 cm [3]. However, inter-
preting the data can be challenging, which has limited its
widespread adoption [4].

To overcome this challenge, a deep segmentation neural
network was tested to pair with GPR for moisture detec-
tion applications on building envelopes, particularly roof
assemblies. The preliminary experiments found that deep
neural networks are effective in segmenting GPR radar-
grams and finding moisture, with particular neural net-
works being more effective than others. By leveraging
deep learning techniques, GPR can provide more accurate
and reliable results in detecting moisture, enhancing its
potential for building maintenance and inspection.

The potential benefits of GPR for detecting moisture
issues on rooftops and building facades are significant.
By identifying moisture issues early on, building owners
and maintenance professionals can address them before
they become costly problems. Additionally, GPR can help
ensure the safety and longevity of structures by detecting
potential structural issues caused by moisture. While more
research is needed to fully realize the potential of GPR
in this application, it is clear that the technology offers
a valuable tool for enhancing building maintenance and
inspection.

2 Related Works

Researchers have explored the use of artificial intelli-
gence (AI) and neural networks in analyzing ground pen-
etrating radar (GPR) scans. This has included using AI
to assess moisture content in various materials, such as
concrete and soil. One example is Kilic and Unluturk [5],
which used a simple artificial neural network to analyze a
GPR scan and classify it as wet or dry. Others, such as
Zhang et al. [6], have used more advanced techniques, like
Resnet and YoloV2, to draw bounding boxes around areas
of suspected moisture. Researchers have also attempted
to estimate soil moisture content using GPR scans, such
as with Qiao et al. [7]’s radial basis function neural net-
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work. Zheng et al. [8] improved on this method by using a
convolutional neural network (CNN) connected to a fully
connected layer to analyze soil moisture content. Other
authors have used similar CNN and fully connected layer
set-ups to find object representations within GPR scans
[9, 10, 11, 12, 13]. Hou et al. [14] implemented a Mask
R-CNN to segment hyperbolic signatures of rebar in GPR
scans of a bridge deck. Our work improves upon these
methods in a number of ways. First, it presents a new
approach to simulating moisture in building envelope as-
semblies. Second, it tests various segmentation models
equipped with a line scan conversion block to determine
if a portion of the GPR scan is wet or dry. Finally, it adds
five additional data channels for analysis, including a max-
amplitude normalization channel, a time-gain channel, and
three additional channels that are power spectral density
images based on the raw GPR scan channel, the max am-
plitude normalized channel, and the time-gain channel.

3 Preparation and Data Collection
3.1 GPR Technology

GPR is a non-destructive testing technique that uses
electromagnetic waves to detect and image subsurface
features of materials. It works by measuring the di-
electric properties of materials, making it an effective
tool for detecting moisture within building envelopes
and roofs, as the dielectric constant of water is much
higher than other materials commonly used in construc-
tion [15, 16, 17, 18, 19]. The GPR technology can be cap-
tured using different methods, with impulse and stepped
frequency continuous wave (SFCW) being the most com-
mon. In impulse GPR, a fixed frequency pulse is sent into
a medium, and the reflected signal is detected [4]. SFCW
GPR, on the other hand, sends a continuous signal with a
modulated frequency into the medium and listens for the
reflectances from various wavelengths. Some studies have
shown that SFCW is the superior configuration for captur-
ing data of smaller, shallow targets, which is particularly
relevant in the structural and building analysis use case of
GPR [20, 4].

3.2 Data Collection in Lab Setting

A novel testbed was created to test building assemblies
with simulated moisture contents (See Figure 1). The
base of the test bed had a 5/16” thick 4’ x 8’ standard-
size OSB sheathing board. Moisture was simulated by
placing moistened paper towels inside a plastic Ziploc bag
on various portions of the test bed. The base of the test
bed had a standard-size OSB sheathing board. Normal
OSB moisture content can vary from 11.5% to 12.5% in
New York City [21]. A base moisture content of 11.7%
was assumed, and the amount of water needed to be added

to the paper towels was calculated accordingly. Due to
size and spacing requirements on the test kit as well as the
range of moisture content required to cause mold growth,
the following breakdown in tests was chosen:

Due to size and spacing requirements on the test kit
as well as the range of moisture content required to cause
mold growth, the following breakdown in tests was chosen:

Figure 1. Moisture Testbed

Packet 1 2 3 4 5 6
MC (%) 11.7 18.7 25.8 32.8 39.8 46.8

Various building materials were added to create a
dataset of GPR scans (See Figure 2). 48 different com-
binations of building material were captured, with each
configuration producing 6 different scans. Each config-
uration produced 6 different scans making it equivalent
to 288 different GPR scans conducted with varying mois-
ture content and different superimposed building envelope
materials. The building materials superimposed onto the
testbed included:

1. 7
16 𝑖𝑛 OSB sheet

2. 1𝑖𝑛 Rigid Foam Insulation
3. Timber 2 × 4 studs
4. Metal 2 × 4 studs
5. 8𝑖𝑛 × 4𝑖𝑛 × 2𝑖𝑛 clay masonry wall bricks
6. 4𝑖𝑛 × 16𝑖𝑛 × 8𝑖𝑛 hollow concrete blocks
7. R19 Batt Insulation

Thin materials like vapor barriers, air barriers, and wa-
terproofing membranes were not included in the test as



Figure 2. Various testbed configurations

they don’t affect GPR readings. The test simulated mois-
ture condensing on both exterior and interior sides of a
wall assembly, depending on the climate and time of year.
Research from other authors confirms that moisture is not
evenly distributed throughout a wall or roof assembly, and
it is more concentrated at either the interior or exterior side
of the assembly [22]. This test was also designed based
on research that shows that moisture content at or above
19% will catalyze mold growth [23]. Figure 3 shows the
testbed set up with layers of interior and exterior insulation
to simulate an EIFS assembly. The test bed was simply
supported over two tables, and the tables were placed at
least 30 cm from the edges of the moisture areas to en-
sure that the table legs did not affect the GPR readings.
Overall, the test bed provided a comprehensive dataset
of GPR scans conducted with varying moisture content
and different building envelope materials, which can help
researchers and practitioners in developing effective mois-
ture control strategies for building assemblies.

Figure 3. Testbed configuration for multiple layers
of insulation

3.3 Pre-Processing of the Collected GPR Data

During the GPR testing process, data was collected by
moving the Proceq GPR 8800 unit over the moist sections
of the testbed, which were premarked to ensure ease of
testing. As the wheel attached to the GPR unit moves,
it records data. However, discontinuities may occur in
the radargram when the unit gets caught on surfaces be-
ing scanned. To address this, scans were redone more

slowly when the unit was caught on a brick. In some
cases, the GPR unit was raised slightly to allow it to
clear obstacles such as slightly protruding bricks. The
scans were recorded on the Proceq GPR Live app and up-
loaded to the Proceq servers, where they were exported
as SEG-Y files. Different GPR manufacturers have dif-
ferent data exporting methods, but the benefit of using
equipment that exports data in an SEG-Y format is that
we can easily process it in Python through the SEGY-SAK
python library. The Software Underground community
routinely performs machine learning and deep learning on
GPR-acquired datasets. The SEG-Y file is processed with
the SEGY-SAK API to extract a numpy array of the raw,
unfiltered GPR scan data. Each column in the numpy
array represents a trace. This library is supported by
the Software Underground community, which routinely
performs machine learning and deep learning on GPR-
acquired datasets.

𝑮𝒊, 𝒋 =


𝑡𝑟1,1 . . . 𝑡𝑟1,𝑛
...

. . .
...

𝑡𝑟𝑚,1 . . . 𝑡𝑟𝑚,𝑛

 =
[
𝑻𝒓1 . . . 𝑻𝒓𝒏

]
(1)

The data obtained from the GPR was raw radargram
data, which was then processed by maximum amplitude
normalizing the data. This is a noise removal technique
that is valid on flat/level surfaces or surfaces where the
GPR unit is a constant distance from the surface being
measured. Maximum amplitude trace normalization finds
the average peak amplitude across all traces and scales each
trace so that its maximum amplitude is now the average
peak amplitude.

𝐴𝑝 =
1
𝑛

𝑛∑︁
𝑖=1

max(𝑻𝒓𝒊 ) (2)

�̃�𝒊, 𝒋 =
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. . . 𝑡𝑟1,𝑛 · 𝐴𝑝

max(𝑻𝒓𝒏 )
...

. . .
...

𝑡𝑟𝑚,1 ·
𝐴𝑝

max(𝑻𝒓1 )
. . . 𝑡𝑟𝑚,𝑛

· 𝐴𝑝

max(𝑻𝒓𝒏 )

 (3)

In addition to applying maximum amplitude trace nor-
malization, a temporal signal gain was also applied to the
images. There are many ways of applying a temporal
signal gain, but the linear and exponential methods were
used in the tests below. For linear signal gains, 𝑮𝒏𝒍𝒎×𝒏

later signals are enhanced by multiplying the traces with
a linearly increasing gain vector that is the same length
as the trace. For exponential signal gains, 𝑮𝒏𝒆𝒎×𝒏, the
signal can be enhanced by multiplying the traces with an
exponentially increasing gain vector.



𝑮𝒏𝒍𝒎×𝒏 = 𝐶 ·

1 . . . 1
...

. . .
...

𝑚 . . . 𝑚

 (4)

�̃�′
𝒊, 𝒋 = 𝑮𝒊, 𝒋 ⊙ 𝑮𝒏𝒍𝒎×𝒏 (5)

𝑮𝒏𝒆𝒎×𝒏 =


1𝑐 . . . 1𝑐
...

. . .
...

𝑚𝑐 . . . 𝑚𝑐

 (6)

�̃�′
𝒊, 𝒋 = 𝑮𝒊, 𝒋 ⊙ 𝑮𝒏𝒆𝒎×𝒏 (7)

This resulted in 3 different GPR scans: the raw data
scan 𝑮𝒊, 𝒋 , the maximum amplitude trace normalized scan
�̃�𝒊, 𝒋 , and the temporal signal gain scan �̃�′

𝒊, 𝒋 . These were
further enhanced by finding a power spectral density image
associated with each scan. The power spectral density
image was generated by finding the PSD of each individual
trace and then concatenating them into a 2D image.

𝑃𝑆𝐷 (𝑮𝒊, 𝒋 , �̃�𝒊, 𝒋 , �̃�′
𝒊, 𝒋) = 𝑷𝒊, 𝒋 , �̃�𝒊, 𝒋 , 𝑷′

𝒊, 𝒋 (8)

There are other GPR scan normalization techniques that
are not applicable to our current scanning data set and
would not produce additional usable information. As a
result, each GPR scan could be represented as a 6 chan-
nel tensor 𝑰 (𝑚×𝑛×6) =

[
𝑮𝒊, 𝒋 , �̃�𝒊, 𝒋 , �̃�′

𝒊, 𝒋 , 𝑷𝒊, 𝒋 , �̃�𝒊, 𝒋 , 𝑷′
𝒊, 𝒋

]
.

This 6 channel tensor served as the input to the deep learn-
ing network. Data was annotated by denoting sections,
i.e., multiple consecutive whole traces, of the radargram
as being either moist or dry. The locations of the simulated
moisture in the test bed was used as a guide because there
were minor changes in the starting or ending position of
the GPR scan from run to run. This was used to produce
a 2D image mask, 𝑴1×𝑛, with a pixel height of 1 and a
width that represented the distance the GPR moved.

4 GPR Segmentation by Deep Learning
Data augmentation is a technique used to increase the

diversity of data in a dataset for training machine learning
models. In this study, random horizontal flips and random
resizing were used for data augmentation. Horizontal flip-
ping had a 50% chance of occurring while resizing had
a 75% chance of occurring. Resizing involved expanding
or shrinking the horizontal portions of the scans by up to
40% compared to the original horizontal scan length. Af-
ter resizing, the binary 0 or 1 representation of the masks
would no longer hold, and any mask value above 0 was set
to 1.

To ensure that the scans could be easily processed by
deep learning segmentation algorithms, the height and
width of the batches were fixed to 672 and 128, respec-
tively. Scans were top-padded by copying the first row of

the input tensor. If the scan width was less than 128, scans
were left-padded, and if the scan width was greater than
128, scans were left-cropped. The left padding was a copy
of the leftmost trace.

Every segmentation model had a line scan conversion
head at the end. This conversion head was a block con-
sisting of a 2D convolutional layer with a 3x3 kernel and
1x1 padding, a 2D bilinear upsampling layer that brought
the output size back up to the original input size followed
by ReLU activation, and a 2D convolutional layer with a
kernel of input height x 3 and padding applied width-wise,
but not height-wise, and a channel reduction to 1.

A series of experiments were conducted to determine
the optimal model for accurately segmenting a raw GPR
scan. Various hyperparameters and model configurations
were tested. The results of these tests will be used to guide
future tests on data obtained from real-world field tests.

A number of hyperparameters were kept the same dur-
ing all tests. Each individual input in the batch was stan-
dardized per channel using the following formula:

𝑰 (𝑚×𝑛×6)
𝑠𝑡𝑑

=

[
. . .

[
𝑪∗∗𝒌−mean(𝑪∗∗𝒌 )

std(𝑪∗∗𝒌 )

]
. . .

]
(9)

For all tests, the learning rate started off at 1e−4 and was
reduced to 5e−5 after 125 epochs. All tests were run for
250 epochs.

Three metrics were used to evaluate the success of the
model:

1. Intersection of Union
2. Dice Score
3. Pixel Accuracy (Accuracy)

IoU and dice score are crucial metrics for evaluating
line scan segmentation algorithms, with IoU being the
most important as this is a segmentation problem.

Deep Supervision: UNet is a widely used image seg-
mentation model, with nearly 60,000 citations as of April
2023. [24] However, it struggles with segmenting fine de-
tails, which can represent a problem for GPR scans as they
can contain finer details than typical images. To address
this, Zhou et al created UNet++, which adds dense skip
connections from higher and lower levels of the segmen-
tation encoder and includes deep supervision. This helps
to train earlier layers and ensure that finer details are de-
tected. The effectiveness of UNet++ was tested to evaluate
whether it can improve segmentation accuracy.

Encoder Type: Segmentation models have an encoder
and decoder. The encoder converts data into a form that the
decoder can process. VGG16 is the standard encoder for
UNet and UNet++. Other encoder networks like ResNets
and Inceptionv4 can be used instead of VGG16. Different
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Figure 5. Effect of Encoder Type on Model Accuracy

networks have different capabilities. A test was conducted
to see the effect of different encoder types on segmentation.

Encoder Depth: Deep Learning Encoders extract fea-
tures from images to create a feature map, with deeper
encoders extracting more features up to a limit. Using
deeper encoder networks can improve models. To test
encoder depth effects, increasingly deep ResNet encoders
were added to a UNet++ decoder.

Decoder Type: Various segmentation decoders exist be-
yond the standard UNet and UNet++ algorithms, including
Feature Pyramid Networks, DeepLabV3, DeepLabV3+,
and Pyramid Attention Networks. Feature Pyramid Net-
works are similar to UNets but use skip connections
and lateral connections passed through a 1x1 convolu-
tion. DeepLabV3 concatenates dilated convolutions over
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Figure 6. Effect of Encoder Depth on Model Accu-
racy

an encoded feature map to obtain global features, while
DeepLabV3+ is an improved version of this model. Pyra-
mid Attention Networks combine high and low level fea-
tures using a feature pyramid attention module and global
upsampling attention module. To evaluate the effective-
ness of these decoders in segmenting GPR scans, tests were
conducted using different encoder types. A ResNet34 en-
coder was used in the first set of tests, followed by an
InceptionV4 encoder in the second set, and a RegNetX32
encoder in the third set. These tests aimed to determine
the most effective decoder for the GPR scan segmentation
task, while also ensuring that the encoder did not signifi-
cantly affect the model’s accuracy.

Decoder Depth: The UNet and UNet++ models use a
VGG16 network as their standard decoder. This network
decodes by progressively lowering the number of channels
within layers in each consecutive block of the decoder
network until eventually it the number of channels has
been reduced to the number of output channels. To train a
CNN to detect more features, the decoder can be modified
to have significantly more channels. In testing, a UNet++
algorithm was trained with various encoders and different
decoder depths to evaluate their performance.

Type 1 (T1) Decoders had a [16, 32, 64, 128, 256]
channel structure. Type 2 (T2) Decoders had a [32, 64,
128, 256, 512] channel structure.

ROC Curves & False Positive vs. False Negative Rate
To assess the performance of moisture detection models,
select models were analyzed using receiver operating char-
acteristic (ROC) curves (See Figure 9). Current moisture
detection methods are criticized for high false positive
rates, which can be addressed by thresholding, but this
increases false negatives. Detection error tradeoff (DET)
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curves explore this trade-off and provide insight into seg-
mentation models’ performance at different scales.

Figure 9. ROC & DET curves of various evaluated
models

5 Conclusion
5.1 Testbed

The testbed simulates moisture in building envelopes
using various construction materials. The conditions sim-
ulated are in some aspects more rigorous than real-world



non-destructive testing for moisture intrusion. Moisture
is located under multiple dry layers of building material,
making electrical impedance testing and IRT the only vi-
able testing methods. Additionally, scanning was con-
ducted when moisture was at a depth of up to 2 feet, which
is beyond the range of non-destructive moisture testing
methods.

Future works to improve upon this testbed would be to:

1. Soak various materials to artificially increase their
internal moisture content.

2. Add additional building materials such as different
kinds of rigid and non-rigid insulation, conductive
waterproofing membranes like EPDM, and exterior
wall finishings like stucco.

3. To conduct tests at various temperatures

However, the current testbed setup establishes a standard
protocol for conducting future tests. Field testing will
further confirm the efficacy of this testbed setup.

5.2 Data Analysis

Providing a six-channel tensor containing scans and
PSD images gave the network additional data. Another
data point could be a 3D tensor created from convert-
ing GPR traces into a spectrogram or a Mel-spectrogram.
Combining the 2D and 3D data could present a problem,
but it can be fused within the model.

5.3 Deep Learning Experiments

The ResNet34 encoder with DeeplabV3 decoder net-
work achieved the highest validation IoU while maintain-
ing high training accuracy. The InceptionV4-FPN model
also performed well in terms of validation IoU. UNet++
decoders achieved the highest AUC scores but underper-
formed on validation tests, indicating overfitting. The best
model had the smallest discrepancy between training and
validation accuracies and achieved over 9% pixel accu-
racy on the validation set. However, the model struggled
to classify the edges of moisture as wet or dry. The rela-
tively small size of the training and validation dataset may
have impacted the model’s performance.

6 Future Work

The predicted line scan mask could then be fused with
the path of the GPR to create a moisture survey map over a
rooftop. This allows for the creation of automated moisture
survey maps using robotics, SLAM, and deep learning.
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